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Universitat Berlin, Ernst Reuter Platz 7, Telefunken Haus, 15 OG, 1000 Berlin 10, FDR 
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Abstract. Monte Carlo calculations on off-lattice chains with various ratios A of bead 
diameter to bond length show that y and y‘ in 2 =UN’ or r 2  = a‘”’, respectively, are 
not 6 / 5  throughout but depend on A. It is generally accepted that the theoretical 
predictions of the two-parameter theory do not depend on the kind of interaction poten- 
tial between non-bonded beads. This assumption, however, proves to be wrong. The 
hard-sphere potential employed in this work yields results inconsistent with those of the 
perturbation theory using a pseudopotential with a 6 function. 

1. Introduction 

The influence of the excluded volume on the configuration of macromolecules has 
been the subject of numerous theoretical investigations during the last three decades. 
Yet this problem could not be solved satisfactorily, due to the enormous mathematical 
difficulties. These require simplifications whose effect on the final result can hardly be 
estimated. The starting point of the theories is almost exclusively the so called 
segment model, where both the bond angles and the angles of rotation can assume any 
value with the bond length fixed. This model is often simplified by introducing 
Gaussian distributed bond lengths. The potential between two non-bonded segments 
is usually written 

w(r j j )  = kT’,S(rij) 

where 6 is a three-dimensional Dirac delta function, and the binary cluster integral 

p = J [I -exp(-w(rij)/k~)l drij. 

If further assumptions are dispensed with, a mathematical treatment similar to the 
Ursell-Mayer theory of real gases leads to a power series containing only two 
parameters, Nu2 ( N  = number of bonds, a =effective bond length) and N 2 p .  This 
series has been accepted to be exact within the framework described and to be 
convergent. Recent work (Domb and Joyce 1972, Edwards 1975, Gordon et ul 1976, 
Aronowitz and Eichinger 1976), however, has cast considerable doubt on this, 
because it could be shown that the calculation of cluster integrals beyond second order 
generates infinite terms. 

Previously the series was believed to converge very slowly even in the limit of small 
perturbations, its applicability thus being confined to the vicinity of the 0 tem- 
perature. For that reason it has been of some interest to get closed expressions valid 
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for a somewhat larger range. The diversity of the relevant results published up to now 
is due to the fact that authors have decoupled the many-body problem in different 
ways. Converting their results for z >> 1, with 

3 3/2 

z =(g) / " '2 ,  

into the form ?= aNY,  values of 1-15 (Yamakawa 1971b), 1.195 (de Gennes 1972), 
1.2 (Flory 1949, Edwards 1965, Flory and Fisk 1966, Fujita et a1 1967, Yarnakawa 
1968, Kurata 1968, Alexandrowia 1968, Yamakawa 1971a), 1.25 (Bueche 1953, 
Yamakawa and Tanaka 1967), 1.33 (Kurata et a1 1960, Ptitsyn 1961, Fixman 1962) 
are obtained for y. 

It is not possible to decide by experiment which of the theories should be prefer- 
red, because ,!3 and hence the parameter z are not directly observable quantities. The 
development of high-speed electronic computers permitted the approach to this 
problem to be made in a quasi-experimental way. For that purpose two methods have 
been evolved: the exact enumeration of possible configurations of short walks on a 
lattice supplemented by extrapolation of interesting quantities to infinitely long walks, 
and Monte Carlo calculations. Domb (1969) has given a comprehensive bibliography 
of both methods in a review. 

The corresponding results of both methods calculated for different lattices resulted 
in y = 6/5 (in the three-dimensional case). Authors working with polymer chains in 
the continuum (pearl necklace model), did not get the same definite statement about 
y. Grishman (1973) for instance got a value of 6/5 within confidence limits whereas 
Stellman and Gans (1972) published data somewhat higher than 6/5. Nevertheless 
y = 6/5 is generally accepted and considered as supporting strongly those approxi- 
mate theories supplying this value asymptotically. 

Thus it is evident there is something common to all the approximate theories: y 
does not depend on the excluded volume. Starting from an arbitrary value of /3 and 
diminishing it successively, y should remain constant and become unity in a dis- 
continuous manner if /3 + 0 (random flight chain). By intuition one expects another 
behaviour, namely a gradual decrease to the random flight value. Such a presumption 
is supported by a publication of Fleming (1967), who found a certain dependence of y 
on the diameter of segments in his Monte Carlo calculations on off-lattice chains. It 
should be added, however, that at that time great significance could not be attributed 
to these results because the chains used had been too short (20-100 segments). A 
further reference to the dependence of y on the size of the structural units is due to 
Warvari et a1 (1972). Recently this problem has been treated in an extensive inves- 
tigation by Smith and Fleming (1975) and in a short communication-published 
almost simultaneously-by me (Bruns 1975). Here the information given earlier will 
be explained in a more profound way and the consequences pointed out. 

2. Generation of chains 

2.1. Basic chains 

As in earlier publications of the present author (Bruns 1969, 1970, 1972, 1975, 1976, 
Bruns and Naghizadeh 1976), a pearl necklace model was used with a hard-sphere 
potential between non-bonded beads. A chain consisted of N + 1 spheres of diameter 
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d indexed from 0 to N ,  which are connected by N bonds of length 1 = 1. The centre of 
the zeroth bead was chosen as origin of a three-dimensional coordinate system with 
the z axis directed to the first bead, the centre of the second bead being in the x-z 
plane, the bond angle ( ~ - 0 ~ )  determining its x and z coordinates. 8, was produced 
by a random number generator in such a manner that cos O1 was equally distributed 
between 

; d Z  -- 1 s COS el s 1 

1 - ( 2 / d 2 ) ~ c o s 0 1 s 1  for A = 2.0. 

ford/! = A  =0.1,0.3,0*5, 1.0 

or 

The choice of the lower limit of cos O1 deviating from -1 ensured no intersections with 
the zeroth bead in the case of A S 1.0. If A = 2.0 an intersection between the beads 0 
and 2 cannot be avoided. The range given for cosO1 then means that the two 
segments intersect each other only within their common neighbour. The direction 
towards the third bead was determined by the supplement of the bond angle O 2  and 
the angle of rotation C#J~, both being randomly generated. Because the direction of the 
bonds was intended to be equally distributed over the surface of a sphere, cos Oz and 
+z ( O ~ C # Q < ~ T )  had to be equally distributed. The range of cos& was chosen as 
above for the reasons already discussed. OZ and 42 are angles with regard to an 
auxiliary coordinate system with its origin in the centre of the first bead, the t axis 
coinciding with the direction to the second bead, the x axis directed in such a manner 
that angle & = O  corresponds to the transposition of the beads 0, 1, and 2. The 
coordinates of the third bead are (0, 0, 1) in terms of the auxiliary system attached to 
the second bead, and must be transformed into the coordinates of the laboratory 
system by rotation and translation. 

After that the proposed position of the third bead was checked for intersection 
with the zeroth bead: the chain was discarded in favour of a fresh start from the origin 
if the distance of the centres of the two beads happened to be smaller than d .  The 
checking system will be described later in this paper. If there was no intersection the 
fourth, fifth,. . . , eighth beads were added in the same manner. The coordinates of 
the ( j  + 1)th bead, r j C l ,  may be calculated recursively: 

with 

-cos Oj cos c$~ sin +i sin Oi cos +i 
Ai = -cos Oi sin 4i -cos q5i sin Oi sin +i 1 sin Oi 0 COS ei 

and 4 ,  = 0. 
To produce sin 4 and cos C$ it is possible to generate C#I and then to calculate its 

trigonometric functions. Considerably more efficient, however, is a method described 
by Fluendy (1970) which is slightly modified here. Two equally distributed random 
numbers {[--I, 11 and v[O, 13 are generated. They must satisfy the condition r 2 =  
t2 + 7 s 1, otherwise a new pair is generated. Thus equally distributed points within 
the upper half of an unit circle are generated. The angle between the radius vector 
and the abscissa is set as 4/2. In this way sin C#J = 257)/r2 and cos 4 = (6’- q 2 ) / r 2 .  
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After a successful construction of a chain, the coordinates of the beads, their 
distances from the origin and the elements of the final matrix of rotation were stored 
on a disc and some quantities of interest (end-to-end distance, etc) calculated. 38 400 
chains were generated in this manner corresponding nearly to the capacity of the disc. 
The method just described seems to be less effective than that of Grishman (1973) 
because of its numerous matrix multiplications. Grishman generates the random 
directions in space by three random numbers representative of a point within an unit 
sphere. This procedure, however, has the following disadvantage: the probability of 
intersection of two beads decreases with increasing difference of their indices. It has 
its maximum value for a proposed jth bead, with regard to the G-2)th bead, and 
amounts to 25% in the case A = 1, as is easily seen by geometrical considerations. By 
our method an intersection with the last but one neighbour is avoided and the 
probability of chain discarding is diminished. 

2.2. Chain prolongation 

Alexandrowicz (1969) and Alexandrowicz and Accad (1971) developed an effective 
procedure for generating long chains. This ‘dimerisation’ method was used here. 

Two of the chains with N = 8 produced in the first run were randomly selected and 
coupled by fusing the eighth bead of the first with the zeroth bead of the second chain. 
The direction of the new bond 8 + 9  was created by random choices of the cor- 
responding angles of bond and rotation. If tests on intersection between the beads of 
the two partial chains were negative, the data of the chain now consisting of 16 bonds 
were stored on a second disc after calculation of interesting quantities. The capacity 
of this second disc was exhausted after storing the data of 38 400/2 = 19 200 chains. 
Tile dimerisation was continued up to chains with N = 1024 bonds. A sample of 300 
such chains was obtained. 

In order to get a pre-estimation of the standard deviation of the mean-square 
end-to-end distance for chains with N = 1024, the variance of the appropiate dis- 
tribution, assumed to be nearly Gaussian, was considered and found to be $(h2)*. The 
standard deviation of the mean-square itself is then &/(3&) (where n is the size of 
the sample). If n is taken as 2100, a relative standard deviation of the order of 
1.8Ohmay be expc ted. This seems to be sufficient, therefore the procedure described 
above was performed seven times. 

The chain generation just described was repeated several times inserting other 
ratios A ,  thus varying the hard-sphere potential. A was taken as 0.1,0.3,0.5, 1.0, and 
2.0. 

2.3. Test on self -intersection 

This is the most time-consuming step of the computation. The beads i and j (i S j - 3) 
with the coordinates ri and rj intersect if lrj-ri l<d. Necessary (but not sufficient) 
conditions for satisfying the inequality are IAxl<d, (AyI<d, lAzI<d. This gives a 
testing scheme which takes the shortest computation time for short chains. If the 
chains are long, this method is too time-consuming, since the number of tests increases 
quadratically with the number of beads. In this case a hash-code procedure has 
proved to be very favourable. Some modifications of it have already been described 
(Gans 1965, Fleming 1967, Jurs and Reissner 1971, Grishman 1973). In this inves- 
tigation concentric sphere shells of thickness 1 were put around the origin. A list was 
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kept of which shells are occupied by the centre of a bead and which are not. In the 
beginning the list is empty. An ‘occupied’ notice is made successively in the list for 
each bead of the chain, and simultaneously given a reference, at which place on a 
second list the appropriate indices can be found. In this second list it is marked, if a 
further bead is positioned in the same shell and where its index (in the second list 
likewise) can be found. If a part of a chain free from intersections has already been 
registered and a new bead is added, the test on intersection runs as follows. It is 
ascertained in which shell the centre of the bead to be checked is positioned. The first 
list gives an indication of whether this shell has already been occupied by preceding 
beads. If so, the second list gives information about their indices. Only these beads 
need be checked in the way described for short chains. The same has to be done with 
the neighbour shells, because beads positioned there may intersect with the bead to be 
added. 

2.4. Random nuniber generator 

The random number generator used is part of the software package of the TR 440 
computer. It is one of the type x i + l  = (axi + b )  mod n. a and b have been chosen 
respectively so as to optimise the spectral test or to minimise the serial correlation 
coefficient between xi  and x , + ~ .  Further tests (test for uniformity, difference test, 
run-up test, inter-arrival test) are met. 

3. Results 

Mean-square end-to-end distances, q ( N ,  A )  and mean-square radii of gyration, 
r2(N,A) ,  as well as their variances, U? and u r 2 ,  were calculated for each of the 
samples for different N ( 8 ,  16,32,64, 128,256,512, 1024) and A (0.1, 0.3, 0.5, 1.0, 
2.0) (tables 1, 2). Attempts were made, as usual, to fit the above to the equations 

L - 

I 

h’(N, A )  = aNY 

and 
- 
r2(N, A )  = a‘NY’ 

respectively. To calculate a (a’) and y ( y ’ )  the equations were linearised: 

In 2 = In a + y In N. 

Table 1. Mean-square end-to-end distances ?(N, A )  and variances for different N and A. 

8 
16 
32 
64 

128 
256 
512 

1024 

8.029* 0.0121 1 
17.30*0.03752 
3540* 0.11 27 
73.5 1 zk 0.3322 
148.4 f 0.9535 
298.45~ 2.708 
598.8*7.651 
1235 f 21.24 

8.610*0.01254 
19.17 * 0.04006 
41.53 *0.1249 
89.54* 0.3818 
192.1 f 1.149 
412.1 k3.447 
895,7* 10.29 
1960* 33.15 

10.20 * 0.01342 
24.27 f 0.04590 
55.88f 0.1543 
127.4f0.5020 
289.0* 1.620 
646.8 * 5.213 
1453 f 16.5 1 
3342 f 53.35 

15.83*0.01151 
40.28* 0.04762 
97.00f0.1877 
227.3 f 0.7004 
526.2f 2.520 
1199 * 8.727 
2737 f 28.79 
6364f98.17 

34.66* 0.02041 
99.40* 0.1 121 
249.5 * 03220 
586.7* 1.993 
1344 f 6.9 10 
2997 f 22.48 
6727k73.52 
14880* 236.7 
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Table 2. Mean-square radii of gyration T ( N ,  A )  and variances for different N and A. 

0.1 0.3 0.5 1 .o 2.0 

8 
16 
32 
64 

128 
256 
512 

1024 

1.486* 0.001281 1.565 * 0.001300 1.779* 0401318 2.471 * 0.0009697 4.435 *0.001367 
3.073*0.004022 3.346* 0.004177 4.054*00004469 6.160* 0.003995 12.83 * 0.007471 
6.182*0.O1196 7.048* 0.01292 9.109* 0.01490 14.87 *0.01630 34.26* 0.03957 
12.46* 0.03500 14.91 * 0.0391 1 20.54*0.04849 35-15 *0.06261 85.S2* 0.1659 
24.90*0.1004 31.7Sk 0.1 168 46.23k0.1545 82.26* 0.2308 204*7* 0.6184 
50.15 * 0.2876 68.33 k0.3450 103.3 *0.4949 189.4* 0.8130 469.4k2.106 
100.7*0.8128 147.1* 1.023 233.2zt1.576 431.8*2.733 1067*6.988 
202.9k2.237 323.6k3.271 531.4jz5.093 994.3k8.978 2407rt22.53 

y and In a were determined so as to minimise 

2 -  
with e : = c z / h ? .  M follows a x 2  distribution with 8 - 2  degrees of freedom ( g =  
number of means). To test the goodness of fit, however, the unmodified equations 
were used: 

Similar equations are yielded for 7. Figures 1 and 2 give respectively the depen- 
dences of the mean-square end-to-end distance and the mean-square radius of gyra- 
tion on the number of bonds. The values for N = l and 2 are theoretical. As can be 
seen, mainly in the case of the end-to-end distances, the curves become linear only 

Number of bonds 

1. The dependence of the mean-square end-to-end distance on the number of 
bonds for A =0.1 (+), 0.3 (x), 0.5 (U), 1.0 (O), 2.0 (A). 
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r I . l . . l l l .  . . l l l l ( l l  I 

1 10 102 10 
Number of bonds 

Figure 2. The dependence of the mean-square radius of gyration on the number of bonds 
for A =0.1 (+), 0.3 ( X ) ,  0.5 (U), 1.0 (O), 2.0 (A). 

after an 'induction range'. It is for this reason that the present author (Bruns 1969, 
1970) had obtained a value for y somewhat greater than 1.2 for chains with A = 1.0, 
because he had available only chains up to bond numbers of about 100. In any case it 
is obvious that equation (1) is valid only asymptotically with regard to off-lattice 
models. Therefore in order to calculate a and y ,  short chains were not considered, 
and the x2 test (equation (4)) was taken as a criterion. As can be seen the fit is 
sufficiently good for N 364, , . . , 128. The influence of A is clearly perceptible, the 
slope of the curves increasing with increasing A. Table 3 shows the parameters of the 
curves together with their standard deviations. 

Though the x 2  test is satisfied in all these cases, one cannot be sure that the 
curvature observable for each of the curves has become small enough to draw the 
conclusion that the values estimated for y are valid in the limit of large N. Truly the 
curvature must disappear gradually, otherwise the slope would not converge, and the 
question is to what extent are the values of y influenced by the curvature in the range 
N > 128. This can be answered with certainty only by generating still longer chains. A 

- 
Table 3. Values of a, U ' ,  y, y' from the relations 2 = uNY and r 2  = u'NY' ,  respectively, 
and their dependence on A. 

h U Y U '  Y' 

0.0 1.000 1.000 0.1667 1 .ooo 
0.1 1.089*0.022 1.013*0.004 0.1904*0.0025 1,005f0.003 
0.3 0,8650 * 0.003 1 1.11 3 f 0.007 0.1442 f 0.0032 1.11 1 * 0.004 
0.5 0.966* 0.018 1.174f0.004 0.1586* 0.0017 1.169 f 0.002 
1.0 1.603 * 0.050 1.194f0.006 0.2460* 0.0045 1.198 f 0.003 
2.0 4437 f 0.16 1.159*0.006 0.641 k0.012 1.189*0.004 
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very rough estimation was performed by fitting the data points repeatedly, always 
omitting those which belong to the lowest N respectively. The results are shown in 
figures 3(a)-(e). As can be seen, the values of y do not change much, the data being 

1 
iL 

Length of Shortest walk 

Figure 3. Values of y ( 0 )  and y ’ ( 0 )  as a function of the length of the shortest walks 
included in the sample for computing the fit. Error bars indicate the standard deviation. 
Values of A are: (a) 0.1, ( b )  0.3, ( c )  0.5, ( d )  1.0, (e) 2-0. 

too scattered for further statements to be made. The values in table 3 do not agree 
very well with those published by Smith and Fleming (1975). The reason may be that 
they have used chains up to about 100 bonds, i.e. values taken from the ‘induction 
range’, to estimate the parameters. Nevertheless the trend is the same in both cases: y 
and y f  increase from 1.0 to 1-2, as A increases from 0.0 to 1.0. One expects now a 
further increase in y and y f  if A > 1.0 to an upper limit of 2.0 (rod-like chains). The 
decrease observed here for A =2.0 is surprising therefore. It is not as yet clear 
whether this ambiguous behaviour will always be found for any A > 1.0, or whether a 
broader ‘induction range’ exists here. The values of y and y f  for the same A scarcely 
differ except for A =2.0. The question of whether the difference is significant, was 
elucidated by an F test on the expression 

In 2/7 = In ala’+(? - y ’ )  In N. (5)  
The hypothesis y - y f = O  was checked against the alternative y - y f # O  on a 
confidence level of 0.95. It could be shown that y and y’ are equal for A s 1.0 within 
the confidence limit given. Only for A = 2.0 is the difference significant. This con- 
tradicts with the results of Smith and Fleming (1975), who found considerable 
differences between the two exponents,&nd those of Stellman and Gans (1965). From 
the results obtained here, the ratio h Z / r 2  is expected to converge to a value afferent 
from zero. The dependence of this ratio on A was investigated, and h 2 / r 2  fitted 
against 1/N by spline functions in figure 4. The shape of the curves does not allow a 
reliable extrapolation to 1/N = 0, the more so, since the ratios most relevant for an 
extrapolation belonging to long chains have considerable standard deviations (-0- 12 
for N = 1024). There is some probability that 

- _  
6.0 < ( h 2 / r 2 ) ,  < 6.4 
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a 16 32 U w 
Number of bonds 

Figure 4. The dependence of the ratio mean-square end-to-end distance to mean-square 
radius of gyration on the number of bonds for A = 0.1 (+), 0.3 ( x), 0.5 (U), 1-0 (0), 2.0 
(A). 

for all A, the ratio thus being greater than that for unperturbed chains. It cannot be 
answered with certainty, if the dependence of g/r2 on A ascertained for low bond 
numbers also exists in the asymptotic case. 

The data produced here offer a good possibility to examine the validity of current 
theories dealing with the dependence of the expansion factors 

at=h2/hg and a ? = r 2 / r g  
-- - -  

(z = Nuz and 2 = N(N + 2)u2/[6(N + 1)J in terms of the segment model) on z. The 
following expressions were examined: 

as - a3 = 2.602 Flory, original (FO) 
a h = a r = a  

Flory, modified (FM) 

Bueche and James (BJ) 

a : - a h  =2’053z (1 + 1 / ( 3 ~ ~ ; ) ) - ~ ’ ~  Kurata, Stockmayer and Roig (KSR) 

Kurata (K) 

a:- %z[ 1 + 2/(3&) + 1/(4&)] Bueche (B) 

a ;  - O.4931a:- 0.2499ak1.”’ sin ( 1*07311nah) 
- 0 . 5 0 6 9 a ~ ” 3 3 2 ~ ~ ~ ( 1 * 0 7 3  Inah) = 2.6302 

1 s  1 3  3a h + 3 a h - A  = $2 

Fujita, Okita and Norisuye (FON) 

Fixman (F) 

Ptitsyn (P) 
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Yamakawa and Tanaka (YT) 

- 1 = 4.452 Yamakawa (Y) 

The expansion factors could be calculated from the Monte Carlo data, whereas z 
could not. Indeed a ( = 1 )  and N are known but p is not. For lattice models this 
quantity can be equated to the volume per lattice point. For off-lattice models, with a 
hard-sphere potential, however, p can only be estimated: 

vo<p s 8 v o  

with uo the volume of a bead. 

used (Bruns 1970). The equations were transformed to 
For this reason the relations given above were examined by a method previously 

f ( a )  = CN'I2. (6) 

The constant C includes quantities originating from the equation itself as well as 
[3/(2.rr)]3'2 and p due to z .  The graph of f ( a )  against N''2 then has to be a straight 
line through the origin. C can be estimated by a least-squares method and the 
goodness of fit by a ,y2 test. Thus there are two criteria available, the test on linearity 
and the quantity p evaluated from C, which must have a value of physical relevance. 
In table 4 only those equations which passed the test on linearity are listed. 

Table 4 shows that the equations of Bueche and James, Kurata, Stockmayer and 
Roig, Fixman, and Ptitsyn do not satisfy the condition of linearity in each case. None 
of the theories can describe the data for 

satisfactorily. 
In many cases the theories yield values of p, exceeding the upper limit 8uo. Flory's 

original equation possesses the best properties for ffh,  followed by the equation of 
Kurata. The properties of each equation concerning a, are insufficient. If the values 
of y and y r  combined in table 3, are assumed not to change essentially for chains still 
longer than those used here, none of the equations is valid. Each of them becomes 
asymptotically a 2  - IVY". yrr ,  however, does not depend on the excluded volume, but is 
a constant, contrary to the Monte Carlo results. Without that the validity of the closed 
expressions is still discussed. In spite of the doubts about the correct form of the 
perturbation equation-already mentioned in the introduction of this paper-the 
single contact coefficients of the equations 

a;= 1 + 1 * 3 3 3 ~ ( - 2 * 0 7 5 ~ ~ + 6 * 4 5 9 ~ ~ -  . . .) 
a ~ = 1 + 1 * 2 7 6 ~ ( - 2 * 0 8 2 ~ ~ +  ...) 

(7) 

are still accepted (Aronowitz and Eichinger 1976), the other coefficients being uncer- 
tain at present. In the case of A =0.1 the values of z calculated by means of the 
estimation of p already used are small enough even for large N. In this range terms 
with higher powers of z are not expected to contribute essentially. The coefficient of z 
can therefore be tested for correctness. Table 5 shows the results. a,& and a,?Mc are 
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Table 4. Tests on closed expressions published up to the present. Quantities relevant in a 
physical sense have been marked by exclamation marks in parentheses. 

A uo=Pmin 8u0 = Pmax Equation P 

0.1 5.24x10-4 4.19X10-3 - 
0.3 0.0141 0.113 FO 

FM 
B 
FON 

0.5 0.0654 0.523 

YT 
Y 
FO 

FM 
K 

1.0 0.524 4.19 

2.0 4.19 33.52 

B 
FON 
Y T  
Y 
FO 

FM 
K 
B 
FON 
YT 
FO 

FM 
K 
B 
FON 
Y T  
Y 

a, 
0.1 5.24 x 1 0 - ~  4.1Yx10-3 - 
0.3 0.0141 0.113 FO 

FM 
YT 

0.5 0.0654 0.523 YT 
1.0 0.524 4.19 - 
2.0 4.19 33.52 YT 

- 
0.0940 (!) 
0.183 
0.184 
0.144 
0.157 
0.172 
0.423 (!) 
0.824 
0.421 (!) 
0.787 
0.562 
0.608 
0.806 
2.56 (!) 
5.00 
1.82 (!) 
4.10 (!) 
2.96 (!) 
2.86 (!) 

32.5 (!) 
63.5 
16.4 (!) 
35.8 
34.0 
23.0 (!) 

143 

- 
0.0878 (!) 
0.179 
0.196 
0.720 

30.66 (!) 
- 

Table 5. Tests on the equations of perturbation theory (equation (7)). 

N zmm z m a  a i m i n  ah2max ~ ; M C  a , L n  Q;MC 

64 0.00138 0.0111 1.0018 1.0145 1.149 1.0018 1.0139 1.150 
128 0.00196 0.0156 1.0026 1.0203 1.159 1.0025 1.0194 1.158 
256 0.00277 0.0221 1.0037 1.0285 1.167 1.0035 1.0272 1.171 
512 0.00391 0.0313 1.0052 1.0399 1.170 1.0050 1.0379 1.178 

1024 0.00553 0.0443 1,0073 1.0555 1.206 1.0070 1.0524 1.188 

Monte Carlo data. As can be seen, equations (7) are not valid for hard-sphere 
potentials. The objection that the values of N may not be large enough, will be 
refuted in 0 4. 
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4. Discussion 

Monte Carlo calculations on off-lattice models with hard-sphere potential show that 
the exact equations of the two-parameter theory supplied with appropriate values of 
excluded volume do not give correct expansion factors. Furthermore they make 
evident that each closed expression derived up to the present fails in one point or 
another. This seems to contradict partially the statements of Alexandrowicz and 
Accad (1973). They had examined some closed expressions (FM, YT, K, P) and the 
perturbation equations by means of a lattice model. A self-intersection, instead of 
being excluded, had been accorded a variable Boltzmann factor. This was related to 
the excluded volume, which now could be varied by variation of the Boltzmann factor. 
The results are as follows. 

(a )  The Monte Carlo data were fitted satisfactorily by the perturbation equation 
a2 = 1 + 1.3332 (without terms of higher order) if z <0.23 and N a 6 4 .  This means 
that chains of N = 64 seem to be long enough for the requirements of the perturbation 
theory. 

( b )  B e  closed expression of Alexandrowicz and Kurata (K) proved to be the best. 
(c) h 2  is a function of /3N1’2. 
The reason for this apparent contradiction to the results presented here can be 

cleared up. The difference between a lattice model and an off-lattice model is 
irrelevant here, though the latter is nearly always used in theory as a prototype of a 
polymer chain. The essential difference is in the potentials employed. Usually a 
pseudopotential is applied by theory: segments are considered as points, which inter- 
act only if two of them take the same vertex in space. Only then is the excluded 
volume /3 effective. Such a potential is easily introduced into Monte Carlo cal- 
culations by means of a lattice model (Kron and Ptitsyn 1964, Alexandrowicz and 
Accad 1973) and therefore confirms consistently the equations of the two-parameter 
theory. There are other circumstances with regard to an off-lattice model. When 
generating a chain it is impossible that two segments have exactly the same coor- 
dinates. Therefore the pseudopotential just mentioned cannot be introduced here. 
The hard-sphere potential, however, leads to completely different results as could be 
shown in 03. The predictions made by the two-parameter theory are connected 
implicitly with the pseudopotential. The opinion, generally accepted, that any inter- 
action potential leads to the same results as the pseudopotential provided the short- 
range nature is preserved, should obviously be revised. 
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